## **Instructions**

- 1. Separate into groups of no more than three persons.
- 2. Only one submission is needed for each group. Late submission will not be accepted.
- 3. **Write down all the steps** that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

| Name   | ID  |
|--------|-----|
| Prapun | 555 |
| •      |     |
|        |     |

4. Do not panic.

m = 2

Consider a system which has 2 channels. We would like to find the blocking probability via the Markov chain method. For each of the following models, <u>draw the Markov chain</u> via discrete time approximation. Don't forget to indicate the transition probabilities on the arrows. Assume that the duration of each time slot is 1 millisecond. Then, use global balance equations to find (1) the <u>steady-state probabilities</u> and then (2) the long-term <u>call blocking probability</u>.

1. Erlang B model: Assume that the total call request rate is 12 calls per hour and the average call duration is

$$\frac{1}{m} = 10 \text{ mins.}$$

$$\frac{2}{1 - \sqrt{3}} = \frac{10}{3} \approx 3.33 \times 40^{-1}$$

$$\frac{1}{1 - \sqrt{3}} = \frac{10}{3} \approx 3.33 \times 40^{-1}$$

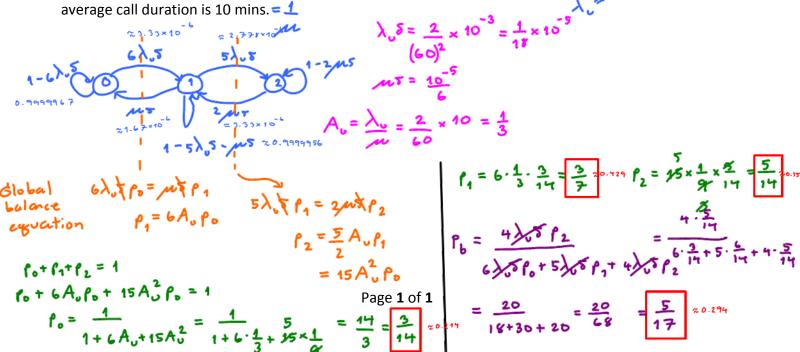
$$\frac{1}{1 - \sqrt{3}} = \frac{10}{3} \approx 3.33 \times 40^{-1}$$

$$\frac{1}{1 - \sqrt{3}} = \frac{10}{3} \approx 3.33 \times 40^{-1}$$

$$\frac{1}{1 - \sqrt{3}} = \frac{10}{3} \approx 3.33 \times 40^{-1}$$

$$\frac{1}{1 - \sqrt{3}} = \frac{10}{3} \approx 3.33 \times 40^{-1}$$

$$\frac{1}{1 - \sqrt{3}} = \frac{10}{3} \approx 3.33 \times 40^{-1}$$


$$\frac{1}{1 - \sqrt{3}} = \frac{10}{3} \approx 3.33 \times 40^{-1}$$

$$\frac{1}{1 - \sqrt{3}} = \frac{1}{1 - \sqrt{3}} = \frac{1}{1 - \sqrt{3}}$$

$$\frac{1}{1 - \sqrt{3}} = \frac{1}{1 - \sqrt{3}}$$

$$\frac{1$$

2. **Engset** model: Assume that there are 6 users. The call request rate for <u>each</u> user is 2 calls per hour and the average call duration is 10 mins = 1

